_adapter | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | protected |
_sampleSize | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | protected |
adapter_t typedef | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | |
computeModelCoefficients(const std::vector< std::vector< int > > &indices, model_t &outModel) const | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | virtual |
countWithinDistance(const model_t &model_coefficients, const double threshold) | opengv::sac::MultiSampleConsensusProblem< transformations_t > | virtual |
drawIndexSample(std::vector< std::vector< int > > &sample) | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
getDistancesToModel(const model_t &model_coefficients, std::vector< std::vector< double > > &distances) | opengv::sac::MultiSampleConsensusProblem< transformations_t > | virtual |
getIndices() const | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
getSamples(int &iterations, std::vector< std::vector< int > > &samples) | opengv::sac::MultiSampleConsensusProblem< transformations_t > | virtual |
getSampleSizes() const | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | virtual |
getSelectedDistancesToModel(const model_t &model, const std::vector< std::vector< int > > &indices, std::vector< std::vector< double > > &scores) const | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | virtual |
indices_ | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
isSampleGood(const std::vector< std::vector< int > > &sample) const | opengv::sac::MultiSampleConsensusProblem< transformations_t > | virtual |
max_sample_checks_ | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
model_t typedef | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | |
MultiCentralRelativePoseSacProblem(adapter_t &adapter, int sampleSize, bool randomSeed=true) | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | inline |
MultiCentralRelativePoseSacProblem(adapter_t &adapter, const std::vector< std::vector< int > > &indices, int sampleSize, bool randomSeed=true) | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | inline |
MultiSampleConsensusProblem(bool randomSeed=true) | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
optimizeModelCoefficients(const std::vector< std::vector< int > > &inliers, const model_t &model, model_t &optimized_model) | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | virtual |
rnd() | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
rng_alg_ | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
rng_dist_ | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
rng_gen_ | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
selectWithinDistance(const model_t &model_coefficients, const double threshold, std::vector< std::vector< int > > &inliers) | opengv::sac::MultiSampleConsensusProblem< transformations_t > | virtual |
setIndices(const std::vector< std::vector< int > > &indices) | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
setUniformIndices(std::vector< int > N) | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
shuffled_indices_ | opengv::sac::MultiSampleConsensusProblem< transformations_t > | |
~MultiCentralRelativePoseSacProblem() | opengv::sac_problems::relative_pose::MultiCentralRelativePoseSacProblem | inlinevirtual |
~MultiSampleConsensusProblem() | opengv::sac::MultiSampleConsensusProblem< transformations_t > | virtual |