#include <MultiSampleConsensus.hpp>
Public Types | |
typedef PROBLEM_T | problem_t |
typedef problem_t::model_t | model_t |
Public Member Functions | |
MultiSampleConsensus (int maxIterations=1000, double threshold=1.0, double probability=0.99) | |
Constructor. More... | |
virtual | ~MultiSampleConsensus () |
Destructor. | |
virtual bool | computeModel (int debug_verbosity_level=0)=0 |
Fit the model to the data. More... | |
Public Attributes | |
int | max_iterations_ |
int | iterations_ |
double | threshold_ |
double | probability_ |
model_t | model_coefficients_ |
std::vector< std::vector< int > > | model_ |
std::vector< std::vector< int > > | inliers_ |
std::shared_ptr< PROBLEM_T > | sac_model_ |
Super-class for sample consensus methods, such as Ransac. This one is using multi-indices for homogeneous sampling over groups of samples.
typedef problem_t::model_t opengv::sac::MultiSampleConsensus< PROBLEM_T >::model_t |
The model we trying to fit
typedef PROBLEM_T opengv::sac::MultiSampleConsensus< PROBLEM_T >::problem_t |
A child of MultiSampleConsensusProblem
opengv::sac::MultiSampleConsensus< PROBLEM_T >::MultiSampleConsensus | ( | int | maxIterations = 1000 , |
double | threshold = 1.0 , |
||
double | probability = 0.99 |
||
) |
Constructor.
[in] | maxIterations | The maximum number of hypothesis generations |
[in] | threshold | Some threshold value for classifying samples as an inlier or an outlier. |
[in] | probability | The probability of being able to draw at least one sample that is free of outliers (see [15]) |
|
pure virtual |
Fit the model to the data.
[in] | debug_verbosity_level | Sets the verbosity level. |
Implemented in opengv::sac::MultiRansac< PROBLEM_T >.
std::vector< std::vector<int> > opengv::sac::MultiSampleConsensus< PROBLEM_T >::inliers_ |
the group-wise indices of the samples that have been clasified as inliers
int opengv::sac::MultiSampleConsensus< PROBLEM_T >::iterations_ |
the current number of iterations
int opengv::sac::MultiSampleConsensus< PROBLEM_T >::max_iterations_ |
the maximum number of iterations
std::vector< std::vector<int> > opengv::sac::MultiSampleConsensus< PROBLEM_T >::model_ |
the group-wise indices for the currently best hypothesis
model_t opengv::sac::MultiSampleConsensus< PROBLEM_T >::model_coefficients_ |
the currently best model coefficients
double opengv::sac::MultiSampleConsensus< PROBLEM_T >::probability_ |
the current probability (defines remaining iterations)
std::shared_ptr<PROBLEM_T> opengv::sac::MultiSampleConsensus< PROBLEM_T >::sac_model_ |
the multi-sample-consensus problem we are trying to solve
double opengv::sac::MultiSampleConsensus< PROBLEM_T >::threshold_ |
the threshold for classifying inliers