OpenGV
A library for solving calibrated central and non-central geometric vision problems
opengv::sac::SampleConsensus< PROBLEM_T > Class Template Referenceabstract

#include <SampleConsensus.hpp>

Inheritance diagram for opengv::sac::SampleConsensus< PROBLEM_T >:
opengv::sac::Ransac< PROBLEM_T >

Public Types

typedef problem_t::model_t model_t
 

Public Member Functions

 SampleConsensus (int maxIterations=1000, double threshold=1.0, double probability=0.99)
 Constructor. More...
 
virtual ~SampleConsensus ()
 Destructor.
 
virtual bool computeModel (int debug_verbosity_level=0)=0
 Fit the model to the data. More...
 

Public Attributes

EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef PROBLEM_T problem_t
 
int max_iterations_
 
int iterations_
 
double threshold_
 
double probability_
 
model_t model_coefficients_
 
std::vector< int > model_
 
std::vector< int > inliers_
 
std::shared_ptr< PROBLEM_T > sac_model_
 

Detailed Description

template<typename PROBLEM_T>
class opengv::sac::SampleConsensus< PROBLEM_T >

Super-class for sample consensus methods, such as Ransac.

Member Typedef Documentation

template<typename PROBLEM_T >
typedef problem_t::model_t opengv::sac::SampleConsensus< PROBLEM_T >::model_t

The model we trying to fit

Constructor & Destructor Documentation

template<typename PROBLEM_T >
opengv::sac::SampleConsensus< PROBLEM_T >::SampleConsensus ( int  maxIterations = 1000,
double  threshold = 1.0,
double  probability = 0.99 
)

Constructor.

Parameters
[in]maxIterationsThe maximum number of hypothesis generations
[in]thresholdSome threshold value for classifying samples as an inlier or an outlier.
[in]probabilityThe probability of being able to draw at least one sample that is free of outliers (see [15])

Member Function Documentation

template<typename PROBLEM_T >
virtual bool opengv::sac::SampleConsensus< PROBLEM_T >::computeModel ( int  debug_verbosity_level = 0)
pure virtual

Fit the model to the data.

Parameters
[in]debug_verbosity_levelSets the verbosity level.
Returns
bool True if success.

Implemented in opengv::sac::Ransac< PROBLEM_T >.

Member Data Documentation

template<typename PROBLEM_T >
std::vector<int> opengv::sac::SampleConsensus< PROBLEM_T >::inliers_

the indices of the samples that have been clasified as inliers

template<typename PROBLEM_T >
int opengv::sac::SampleConsensus< PROBLEM_T >::iterations_

the current number of iterations

template<typename PROBLEM_T >
int opengv::sac::SampleConsensus< PROBLEM_T >::max_iterations_

the maximum number of iterations

template<typename PROBLEM_T >
std::vector<int> opengv::sac::SampleConsensus< PROBLEM_T >::model_

the indices for the currently best hypothesis

template<typename PROBLEM_T >
model_t opengv::sac::SampleConsensus< PROBLEM_T >::model_coefficients_

the currently best model coefficients

template<typename PROBLEM_T >
double opengv::sac::SampleConsensus< PROBLEM_T >::probability_

the current probability (defines remaining iterations)

template<typename PROBLEM_T >
EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef PROBLEM_T opengv::sac::SampleConsensus< PROBLEM_T >::problem_t
template<typename PROBLEM_T >
std::shared_ptr<PROBLEM_T> opengv::sac::SampleConsensus< PROBLEM_T >::sac_model_

the sample-consensus problem we are trying to solve

template<typename PROBLEM_T >
double opengv::sac::SampleConsensus< PROBLEM_T >::threshold_

the threshold for classifying inliers


The documentation for this class was generated from the following file: